Geometrical Realization of Combinatorial Geometries

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometrical Realizations of Shadow Geometries

Contents Introduction 615 General definitions and notation 618 § 1. Shadow geometries of incidence geometries 619 § 2. Shadow geometries of chamber systems and their geometrical reali-zations 626 § 3. Interpreting the shadow geometries as tessellations. .. . 6 3 1 § 4. Transitive tessellations for reflection groups 636 § 5. The Delaney symbols of the tessellations with a transitive reflection g...

متن کامل

Varieties of Combinatorial Geometries

A hereditary class of (finite combinatorial) geometries is a collection of geometries which is closed under taking minors and direct sums. A sequence of universal models for a hereditary class 'S of geometries is a sequence (T„ ) of geometries in ?T with rank Tn = n, and satisfying the universal property: if G is a geometry in 5" of rank n, then G is a subgeometry of T„. A variety of geometries...

متن کامل

1.1. Combinatorial Geometries 3

Quasiminimality In this chapter we introduce Zilber’s notion [Zil05] of an abstract quasiminimalexcellent class and prove Theorem 2.23: Lω1,ω-definable quasiminimal-excellent classes satisfying the countable closure condition are categorical in all powers. In the next chapter we expound Zilber’s simplest concrete algebraic example. In Chapter 25, we will place this example in the context of She...

متن کامل

Weak Cuts of Combinatorial Geometries

A weak cut of a Combinatorial Geometry G is a generalization of a modular cut, corresponding to the family of the new dependent sets in a weak map image of G. The use of weak cuts allows the construction of all weak images of G, an important result being that, to any family "311 of independent sets of G, is associated a unique weak cut S containing "311. In practice, the flats of the weak image...

متن کامل

Hodge Theory for Combinatorial Geometries

The matroid is called loopless if the empty subset of E is closed, and is called a combinatorial geometry if in addition all single element subsets of E are closed. A closed subset of E is called a flat of M, and every subset of E has a well-defined rank and corank in the poset of all flats of M. The notion of matroid played a fundamental role in graph theory, coding theory, combinatorial optim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1971

ISSN: 0002-9939

DOI: 10.2307/2038210